Getting to the Poynt

Specialised antennas for IoT

www.poynting.tech
Presenter:

Dr. André Fourie
CEO of Poynting Group

- Ph.D Electrical Engineering 1991
- Professor at Wits until 2001
- Founded Poynting Antennas 2001
- Listed as inventor in over 30 patents
- Published over 50 academic papers and 4 books
Agenda

• IoT, and the big picture?
• IoT omni antenna performance?
• Why are expensive antennas often cheaper?
• Application examples & case studies
• How are we positioning our antennas for IoT
IoT, and the big picture?
Which M2M / IoT Technologies?

- **Low Power Wide Area Network (LPWAN)**: Sigfox, LoRa
- **Cellular Network**: NB-IoT, LTE-M
- **Local Area Network (LAN)**
- **Personal Area Network (PAN)**: Z-Wave, ZigBee, Wi-Fi, Bluetooth, RFID
Frequency Bands are Region Dependant

<table>
<thead>
<tr>
<th>Wi-Fi</th>
<th>IEEE 802.11 standard for Ethernet replacement</th>
<th>WiFi HaLow</th>
<th>HaLow is Wi-Fi at a lower frequency ISM band</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2M & IoT Technologies</td>
<td>Access and tracking of identifying RFID tags</td>
<td>Bluetooth BLE</td>
<td>Bluetooth Low Energy (e.g. BT 4.0), BT 5.0 for IoT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zigbee</td>
<td>IEEE 802.15.4 Low-power, RF mesh network</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z-Wave</td>
<td>Primarily home automation RF technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LoRa</td>
<td>Low-Power Wide-Area Network (LPWAN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sigfox</td>
<td>Proprietary technology using ISM bands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LTE-M/NB-IoT</td>
<td>IoT standards using existing LTE networks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CDMA450</td>
<td>CDMA at the lower frequency bands for M2M/IoT</td>
</tr>
</tbody>
</table>

Antennas don’t care about technology, but only frequency

ISM Frequency Bands

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>433MHz</td>
<td>✓</td>
</tr>
<tr>
<td>868MHz</td>
<td>✓</td>
</tr>
<tr>
<td>EMEA</td>
<td>✓</td>
</tr>
<tr>
<td>915MHz</td>
<td>✓</td>
</tr>
<tr>
<td>US & APAC</td>
<td>✓</td>
</tr>
<tr>
<td>2.4GHz</td>
<td>✓</td>
</tr>
<tr>
<td>ISM & Wi-Fi</td>
<td>✓</td>
</tr>
<tr>
<td>5GHz</td>
<td>✓</td>
</tr>
<tr>
<td>ISM & Wi-Fi</td>
<td>✓</td>
</tr>
</tbody>
</table>

GSM/UMTS/LTE Frequency Bands (Country Specific)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>450MHz</td>
<td>✓</td>
</tr>
<tr>
<td>700MHz</td>
<td>✓</td>
</tr>
<tr>
<td>800MHz</td>
<td>✓</td>
</tr>
<tr>
<td>850MHz</td>
<td>✓</td>
</tr>
<tr>
<td>900MHz</td>
<td>✓</td>
</tr>
<tr>
<td>1800MHz</td>
<td>✓</td>
</tr>
<tr>
<td>1900MHz</td>
<td>✓</td>
</tr>
<tr>
<td>2100MHz</td>
<td>✓</td>
</tr>
<tr>
<td>2300MHz</td>
<td>✓</td>
</tr>
<tr>
<td>2500MHz</td>
<td>✓</td>
</tr>
<tr>
<td>2700MHz</td>
<td>✓</td>
</tr>
<tr>
<td>3400MHz</td>
<td>✓</td>
</tr>
<tr>
<td>3800MHz</td>
<td>✓</td>
</tr>
</tbody>
</table>

aka CBRS Bands
IoT Specific Technologies

<table>
<thead>
<tr>
<th></th>
<th>LoRa</th>
<th>SIGFOX</th>
<th>LTE-M</th>
<th>WiFi</th>
<th>MESH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequencies</td>
<td>868/915MHz, (also 433MHz)</td>
<td>868/915MHz</td>
<td>Various GSM/LTE bands</td>
<td>2.4GHz, 5.8GHz (also 868/915 MHz)</td>
<td>2.4GHz, 5.8GHz (also 868/915 MHz) ++</td>
</tr>
<tr>
<td>Data Rates</td>
<td>bits/s – kb/s</td>
<td>bits/s</td>
<td>Kb/s ~ Mb/s</td>
<td>Mb/s</td>
<td>Mb/s</td>
</tr>
<tr>
<td>Mobility</td>
<td>Yes</td>
<td>Limited</td>
<td>Yes/Limited</td>
<td>Limited</td>
<td>High</td>
</tr>
<tr>
<td>Coverage</td>
<td>Limited Area</td>
<td>International</td>
<td>National</td>
<td>Small/Large</td>
<td>Large</td>
</tr>
<tr>
<td>Network Ownership</td>
<td>Own</td>
<td>Sigfox</td>
<td>Telco</td>
<td>Own</td>
<td>Own</td>
</tr>
<tr>
<td>Client Device Costs</td>
<td>Low</td>
<td>Low</td>
<td>Med</td>
<td>Med</td>
<td>High</td>
</tr>
<tr>
<td>Data/Subscription Costs</td>
<td>None</td>
<td>Low</td>
<td>Med/High</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>User Network Deployment Costs</td>
<td>Medium</td>
<td>None</td>
<td>None</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Device Battery Life</td>
<td>Long</td>
<td>Very Long</td>
<td>Medium</td>
<td>Short</td>
<td>Short</td>
</tr>
<tr>
<td>Typical Base Station Range</td>
<td>~ 10 Kilometers</td>
<td>~ 50 Kilometers</td>
<td>~ 50 Kilometers</td>
<td>~ 200 meters</td>
<td>N/A</td>
</tr>
</tbody>
</table>
IoT omni antenna performance?
PUCK-5 vs. Competitor Comparison (700MHz)

COMPETITOR ANTENNA (TOP VIEW):
698 – 960 MHZ

POYNTING ANTENNA (TOP VIEW):
698 – 960 MHZ

2dBi Max Gain @ 698-960 MHz
According to competitor specification sheet
Gain @ 700 MHz - Unknown

-1dBi Max Gain @ 698-960 MHz
According to Poynting specification sheet
Omni-280 vs. Competitor Comparison (2600MHz)

COMPETITOR ANTENNA (TOP VIEW):
2600 MHZ

5dBi Max Gain @ 2600 MHz
According to competitor specification sheet

POYNTING ANTENNA (TOP VIEW):
2300-2700 MHZ

3dBi Max Gain @ 2300-2700 MHz
According to Poynting specification sheet

14dB variation
2dB variation

VS
Why are expensive antennas often cheaper?
Smart Meter – example:

The cost of not doing it right

<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>Scenario 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install Modem</td>
<td>Install DASH-1 antenna as standard</td>
</tr>
<tr>
<td>Number of Smart Meters</td>
<td>1000</td>
</tr>
<tr>
<td>Percentage of meters - performing well</td>
<td>46%</td>
</tr>
<tr>
<td>Percentage of meters - performing average</td>
<td>35%</td>
</tr>
<tr>
<td>Percentage of meters - performing poorly</td>
<td>18%</td>
</tr>
<tr>
<td>Number of Meters - performing well</td>
<td>462</td>
</tr>
<tr>
<td>Number of Meters - performing average</td>
<td>355</td>
</tr>
<tr>
<td>Number of Meters - performing poorly</td>
<td>183</td>
</tr>
<tr>
<td>Cost for Technician/Contractor per hour</td>
<td>€35</td>
</tr>
<tr>
<td>Price for a DASH-1 antenna</td>
<td>€18</td>
</tr>
<tr>
<td>Total Number of sites installed with DASH-1 from the outset:</td>
<td>0</td>
</tr>
<tr>
<td>Number of rework sites (return to repair):</td>
<td>538</td>
</tr>
<tr>
<td>Initial installation costs (DASH-1 installed with Smart Meter):</td>
<td>€-</td>
</tr>
<tr>
<td>Rework costs (price of antenna):</td>
<td>€9,684</td>
</tr>
<tr>
<td>Rework costs (send technician/contractor back to site):</td>
<td>€18,830</td>
</tr>
<tr>
<td>Total</td>
<td>€28,514</td>
</tr>
</tbody>
</table>

- Cost of initial ‘correct’ deployment more efficient than ad-hoc implementation
- Many costs not obvious:
 - Cost of second, third rework
 - Cost of transport, tolls
 - Cost of overtime
 - Cost of distant towns/cities
 - Loss of productivity
- Cost of labour in Europe much higher than South African salaries assumed
- Cost of damage to reputation => loss of business potential
- **Strategy:** implement all smart meters with DASH-1 antenna
Application Examples & Case Studies

www.poynting.tech
Mining & Tunnels: Why use Circular polarised?

Linear Polarisation
- Rotates unpredictably down a tunnel
- Propagation affected by tunnel dimensions & surfaces

Circular Polarisation
- Contains all polarisations, therefore significantly more reliable radio links
- Propagation ‘adapts’ better within tunnel dimensions
- Circular polarisation propagates past obstacles & obstructions more reliably
Mining & Tunnels: Technologies & Frequencies

- **HELI-6** (700-960 MHz)
- **HELI-5** (1800-2100 MHz)
- **HELI-3**
- **HELI-4** | **HELI-8** (2.4-2.5 GHz)
- **HELI-22** (2.4-2.5 & 5.0-6.0 MHz)
- **HELI-31** (1.7 - 7.2 GHz)

For WiFi 6, Wideband LTE/5G
To be released soon

~99% of Poynting HELI antennas used in mines @ 2.4 GHz frequency

This document and its content is confidential and may not be distributed, reproduced, forwarded in anyway whatsoever without written consent from Poynting. This document does not constitute an agreement. All rights reserved.
Mining Tunnels: Example Tests in South Africa using Rajant Mesh nodes with Poynting HELI antennas

Platinum Mine

- HELI to Rugged Phone/Tablet (155m)
- HELI to Rugged Phone/Tablet (200m)
- HELI to HELI (275m)
- HELI to HELI (275m) while train passing

Coal Mine (mesh node to mesh node)

- 100m
- 200m
- 300m
- 400m
- 500m
- 670m
- 1000m
- LOS
- NLOS

Ping (ms) & TCP Throughput (Mbps)

RSSI (dBm)

- Platinum Mine
- Coal Mine

Ping (ms) & TCP Throughput (Mbps)

RSSI (dBm)

- Platinum Mine
- Coal Mine

Ping (ms) & TCP Throughput (Mbps)

RSSI (dBm)

- Platinum Mine
- Coal Mine
Active Mining Stopes Example (~1.5m high ceiling)- Rajant Mesh nodes with Poynting HELI antennas

Platinum Mine (Active Stopes)

RSSI (dBm)

Test # 1 Test # 2 Test # 3 Test # 4 Test # 5 Test # 6 Test # 7
-100 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50
Point of Sale (POS) / Vending Company

From these antennas...

To our antennas

OMNI-39 / OMNI-280

OMNI-39 (indoors)
OMNI-600 (outdoors)

PUCK-5
John Laidler (author) relies on MIMO-1 in his motorhome.
First electric powered boat uses OMNI-291 & OMNI-296

✓ On the roof of the Fjords there are eight 4G antennas
✓ Ensuring a stable and reliable reception and transmission of cellular (3G and 4G signal)
✓ Two antennas for each of the four 4G routers
Vehicle Tracking: Where is the antenna?

- 10s of thousands of DIPL-1 antennas sold for stealth vehicle tracking
- New OMNI-510 for easy IoT/Smart Meter mount
- PCB antennas can be designed at MOQ

This document and its content is confidential and may not be distributed, reproduced, forwarded in any way whatsoever without written consent from Poynting. This document does not constitute an agreement. All rights reserved.
How are we positioning our antennas for IoT?
Urban LTE Omni-directional Antennas (2)

- **OMNI-280**
 - Multipurpose M2M / POS / IoT Antenna
 - **690MHz to 3800MHz**, with 4dBi max Gain
 - Multiple mount (included): Wall and pole bracket, desk mount (with Velcro double sided tape), magnetic base
 - 154mm (h) x 51mm (w)

- **XPOL-1**
 - 2x2 MIMO (Cross Polarised +45/-45 degrees)
 - **790MHz to 2700MHz**, with 4dBi max Gain
 - 5m twin HDF195 with SMA Connectors
 - Pole, wall and window suckers
DASH-1 Stealth IoT/M2M/Smart Meter Antenna

- Low visibility LTE / Smart Meter / IoT Antenna
 - 690MHz to 2700MHz, with 4dBi max Gain
 - Meter Box mount – with spigot & double sided tape
 - 258mm (l) x 13mm (w) x 17mm (h)
 - High volume item, MOQ 1000

LTE/4G/3G/2G

- Zigbee
- Z-Wave
- LoRaWAN
- Sigfox
- LTE-M/NB-IoT
- Bluetooth
- Wi-Fi
- Wi-Fi HaLow
Planned OMNI-510 IoT/M2M/Smart Meter Antenna

- Ultra low profile LTE / Smart Meter / IoT Antenna
 - Wideband 690MHz to 2700MHz, with 2dBi max Gain
 - Window & Box mount – with double sided tape
 - 138mm (l) x 26mm (w) x 10mm (h) - TBC

<table>
<thead>
<tr>
<th>Technology</th>
<th>Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTE/4G/3G/2G</td>
<td>✓</td>
</tr>
<tr>
<td>Zigbee</td>
<td>✓</td>
</tr>
<tr>
<td>Z-Wave</td>
<td>✓</td>
</tr>
<tr>
<td>LoRaWAN</td>
<td>✓</td>
</tr>
<tr>
<td>Sigfox</td>
<td>✓</td>
</tr>
<tr>
<td>LTE-M/NB-IoT</td>
<td>✓</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>✓</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>✓</td>
</tr>
<tr>
<td>Wi-Fi HaLow</td>
<td>✓</td>
</tr>
</tbody>
</table>
MIMO-3 ‘New Improved Base’ (V2)

- Variations of the following:
 - 2x2 MIMO LTE: 410MHz – 3800MHz
 - 2x2 MIMO Dualband WiFi: 2.4GHz & 5GHz
 - GPS/GLONASS

- Mounting Options:
 - Removable Spigot (30mm & 80mm lengths)
 - 6x M4 direct/flush mountable
 - Removable Magnet Mounts (Optional)
 - Thicker Foam base (5mm)

- Foam filled (IP68 rating)
- New ‘Bright’ White ASA Radome
PECJ Range of Antennas

- Easy installation; Multi-Mounting options: Magnetic, spigot, screw, double sided tape & wall/pole bracket (included)
- Small & Low-Profile (Ø 102mm x h 38mm)
- Waterproof & Dustproof
- Highly Ruggedized (complies with IK08)
- Fire Resistant (complies with ECE-R 118.02)

<table>
<thead>
<tr>
<th>Description</th>
<th>Puck Antenna: LTE (SISO)</th>
<th>2x2 MIMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUCK-0001</td>
<td>Puck Antenna: 2-in-1</td>
<td>LTE (MIMO)</td>
</tr>
<tr>
<td>PUCK-0002</td>
<td>Puck Antenna: 3-in-1</td>
<td>LTE (MIMO) & GPS</td>
</tr>
<tr>
<td>PUCK-0004</td>
<td>Puck Antenna: 5-in-1</td>
<td>LTE (MIMO), WiFi (MIMO) & GPS</td>
</tr>
<tr>
<td>PUCK-0005</td>
<td>Puck Antenna: WiFi (2x2 MIMO)</td>
<td>2x2 MIMO</td>
</tr>
<tr>
<td>PUCK-0012</td>
<td>GPS Only, in the same housing as the PUCK</td>
<td>2x2 MIMO</td>
</tr>
</tbody>
</table>

Includes:
- 3.2GHz to 3.8GHz CBRS Band
HELI Range of Antennas

• Ideal for mining / tunnels where normal antennas do not perform sufficiently
• Perfect for IoT, Telemetry
• Circular Polarized Antennas; works in tunnels without line of sight
High Level Product Roadmap 2019 (DRAFT)

• **OMNI-510**
 • Flat surface/window mount LTE IoT antenna)
 • To be released June 2019

• **HELI-5**
 • LTE 1800/2100MHz HELI Antenna for mining and other tunnels
 • Limited Availability, to be officially released June/July 2019

• **Mini-HELI series**
 • Various smaller HELI antennas, for Dualband 2.4GHz & 5GHz
 • Flexible configurations for MIMO, different frequency bands, etc.
 • Availability Q3 2019

• **New XPOL Models – Availability Q3/Q4 2019**
 • New model based on the XPOL-2, with additional bands for 5G (includes 3.4 – 3.8GHz)
 • New model based on the XPOL-1, with additional bands for 5G (details TBA)
LoRa / Sigfox Roadmap (DRAFT)

- LoRa / Sigfox (ISM 868/915MHz) Q4 2019 / Q1 2020 in the following enclosures & types:
 - PUCK sized LoRa / Sigfox antenna
 - OMNI-280 sized LoRa / Sigfox antenna
 - OMNI-121 or OMNI-292 sized LoRa / Sigfox antenna
 - OMNI-510 sized LoRa / Sigfox antenna
Thank you!

Any questions?

info@poynting.tech

www.poynting.tech